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Abstract. The problem of merging multiple databases of information about common entities is frequently en-
countered in KDD and decision support applications in large commercial and government organizations. The
problem we study is often called the Merge/Purge problem and is difficult to solve both in scale and accuracy.
Large repositories of data typically have numerous duplicate information entries about the same entities that are
difficult to cull together without an intelligent “equational theory” that identifies equivalent items by a complex,
domain-dependent matching process. We have developed a system for accomplishing this Data Cleansing task
and demonstrate its use for cleansing lists of names of potential customers in a direct marketing-type applica-
tion. Our results for statistically generated data are shown to be accurate and effective when processing the data
multiple times using different keys for sorting on each successive pass. Combing results of individual passes
using transitive closure over the independent results, produces far more accurate results at lower cost. The system
provides a rule programming module that is easy to program and quite good at finding duplicates especially in an
environment with massive amounts of data. This paper details improvements in our system, and reports on the
successful implementation for a real-world database that conclusively validates our results previously achieved
for statistically generated data.
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1. Introduction

Merging large databases acquired from different sources with heterogeneous representa-
tions of information has become an increasingly important and difficult problem for many
organizations. Instances of this problem appearing in the literature have been calledrecord
linkage(Fellegi and Sunter), thesemantic integrationproblem (ACM, 1991) or theinstance
identificationproblem (Wang and Madnick, 1989), and more recently thedata cleansing
problem regarded as a crucial first step in a Knowledge Discovery in Databases (KDD) pro-
cess (Fayyad, Piatetsky-Shapiro and Smyth, 1996). Business organizations call this prob-
lem themerge/purgeproblem.

In this paper we consider the data cleansing of very large databases of information that
need to be processed as quickly, efficiently, and accurately as possible. One month is a
typical business cycle in certain direct marketing operations. This means that sources of
data need to be identified, acquired, conditioned, and then correlated or merged within a
small portion of a month in order to prepare mailings and response analyses. It is not
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uncommon for large businesses to acquire scores of databases each month, with a total
size of hundreds of millions to over a billion records, that need to be analyzed within a
few days. In a more general setting, data mining applications depend upon a conditioned
sample of data that is correlated with multiple sources of information and hence accurate
database merging operations are highly desirable. Within any single data set the problem is
also crucial for accurate statistical analyses. Without accurate identification of duplicated
information, frequency distributions and various other aggregations will produce false or
misleading statistics leading to perhaps untrustworthy results.

Large organizations have grappled with this problem for many years when dealing with
lists of names and addresses and other identifying information. Credit card companies,
for example, need to assess the financial risk of potential new customers who may pur-
posely hide their true identities (and thus their history) or manufacture new ones. The
Justice Department and other law enforcement agencies seek to discover crucial links in
complex webs of financial transactions to uncover sophisticated money laundering activ-
ities (Senator, et al., 1995). Errors due to data entry mistakes, faulty sensor readings or
more malicious activities, provide scores of erroneous data sets that propagate errors in
each successive generation of data.

The problem of merging two or more databases has been tackled in a straightforward
fashion by a simple sort of the concatenated data sets followed by a duplicate elimina-
tion phase over the sorted list (Bitton and DeWitt, 1983). However, when the databases
involved are heterogeneous, meaning they do not share the same schema, or that the
same real-world entities are represented differently in the data sets, the problem of merg-
ing becomes more difficult. The first issue, where databases have different schema, has
been addressed extensively in the literature and is known as theschema integrationprob-
lem (Batini, Lenzerini and Navathe, 1986). We are primarily interested in the second prob-
lem: heterogeneous representations of data and its implication when merging or joining
multiple data sets.

The fundamental problem in merge/purge is that the data supplied by various sources
typically include identifiers or string data, that are either different among different data sets
or simply erroneous due to a variety of reasons (including typographical or transcription
errors, or purposeful fraudulent activity (aliases) in the case of names). Hence, the equality
of two values over the domain of the common join attribute is not specified as a simple
arithmetic predicate, but rather by a set of equational axioms that define equivalence, i.e., by
anequational theory. Determining that two records from two databases provide information
about the same entity can be highly complex. We use a rule-based knowledge base to
implement an equational theory.

The problem of identifying similar instances of the same real-world entity by means
of an inexact match has been studied by the Fuzzy Database (Buckles and Petry, 1982)
community. Much of the work has concentrated on the problem of executing a queryQ
over a fuzzy relational database. The answer forQ is the set of all tuples satisfyingQ in a
non-fuzzy relational database and all tuples that satisfyQ within a threshold value. Fuzzy
relational databases can explicitly store possibility distributions for each value in a tuple,
or use possibility-based relations to determine how strongly records belong to the fuzzy
set defined by a query (George, et al. 1996). The problem we study in this paper is closely
related to the problem studied by the fuzzy database community. However, while fuzzy
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querying systems are concerned with the accurate and efficient fuzzy retrieval of tuples
given a queryQ, we are concerned with the pre-processing of the entire data set before
it is even ready for querying. The process we study is off-line and involves clusteringall
tuplesinto equivalence classes. This clustering is guided by the equational theory which
can include fuzzy matching techniques.

Since we are dealing with large databases, we seek to reduce the complexity of the
problem by partitioning the database into partitions orclusterssuch that the potentially
matching records are assigned to the same cluster. Here we use the term cluster in line
with the common terminology of statistical pattern recognition. In this paper we discuss
solutions to merge/purge in which sorting of the entire data set is used to bring the matching
records close together in a bounded neighborhood in a linear list, as well as an optimization
of this basic technique that seeks to eliminate records during sorting with exact duplicate
keys. Elsewhere we have treated the case of clustering in which sorting is replaced by a
single-scan process (Hern´andez and Stolfo, 1995). This clustering resembles the hierarchi-
cal clustering strategy proposed in (Buckley, 1995) to efficiently perform queries over large
fuzzy relational databases. However, we demonstrate that, as one may expect, none of these
basic approaches alone can guarantee high accuracy. Here, accuracy means how many of
the actual duplicates appearing in the data have been matched and merged correctly.

This paper is organized as follows. In section 2 we detail a system we have implemented
that performs a generic Merge/Purge process that includes a declarative rule language for
specifying an equational theory making it easier to experiment and modify the criteria for
equivalence. (This is a very important desideratum of commercial organizations that work
under strict time constraints and thus have precious little time to experiment with alternative
matching criteria.) Then in section 3 we demonstrate that no single pass over the data using
one particular scheme as a sorting key performs as well as computing the transitive closure
over several independent runs each using a different sorting key for ordering data. The
moral is simply that several distinct “cheap” passes over the data produce more accurate
results than one “expensive” pass over the data. This result was verified independently by
Monge and Elkan (Monge and Elkan, 1997) who recently studied the same problem using
a domain-independent matching algorithm as an equational theory.

In section 4 we provide a detailed treatment of a real-world data set, provided by the Child
Welfare Department of the State of Washington, which was used to establish the validity
of these results. Our work using statistically generated databases allowed us to devise
controlled studies whereby the optimal accuracy of the results were known a priori. In real
world data sets, obviously one cannot know the best attainable results with high precision
without a time consuming and expensive human inspection and validation process. In cases
where the data sets are huge, this may not be feasible. Therefore, the results reported here
are due to the human inspection of a small but substantial sample of data relative to the
entire data set. The results on the real-world data validate our previous predictions as being
quite accurate1.

Finally, in section 5, we present initial results on an Incremental Merge/Purge algorithm.
The basic merge/purge procedure presented in section 2 assumes a single data set. If a new
data set arrives, it must be concatenated to the previously processed data set and the basic
merge/purge procedure executed over this entire data set. The Incremental algorithm re-
moves this restriction by using information gathered from previous merge/purge executions.
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Figure 1. Window Scan during Data Cleansing

Several strategies for determining what information to gather at the end of each execution
of the incremental algorithm are proposed. We present initial experimental results showing
that the incremental algorithm reduces the time needed to execute a merge/purge procedure
when compared with the basic algorithm.

2. Basic Data Cleansing Solutions

In our previous work we introduced the basic “sorted-neighborhood method” for solving
merge/purge as well as a variant “duplicate elimination” method. Here we describe in detail
this basic approach, followed by a description of an incremental variant that merges a new
(smaller) increment of data with an existing previously cleansed data set.

2.1. The Basic Sorted-Neighborhood Method

Given a collection of two or more databases, we first concatenate them into one sequential
list of N records (after conditioning the records) and then apply the sorted-neighborhood
method. The sorted-neighborhood method for solving the merge/purge problem can be
summarized in three phases:

1. Create Keys: Compute a key for each record in the list by extracting relevant fields
or portions of fields. The choice of the key depends upon an “error model” that may
be viewed as knowledge intensive and domain-specific; the effectiveness of the sorted-
neighborhood method highly depends on a properly chosen key with the intent that
common but erroneous data will have closely matching keys. We discuss the effect of
the choice of the key in section 2.2.

2. Sort Data : Sort the records in the data list using the key of step 1.

3. Merge : Move a fixed size window through the sequential list of records limiting the
comparisons for matching records to those records in the window. If the size of the
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window isw records, then every new record entering the window is compared with
the previousw − 1 records to find “matching” records. The first record in the window
slides out of the window (See Figure 1).

When this procedure is executed serially as a main-memory based process, the create keys
phase is anO(N) operation, the sorting phase isO(N logN), and the merging phase is
O(wN), whereN is the number of records in the database. Thus, the total time complexity
of this method isO(N logN) if w < dlogNe,O(wN) otherwise. However, the constants
in the equations differ greatly. It could be relatively expensive to extract relevant key values
from a record during the create key phase. Sorting requires a few machine instructions to
compare the keys. The merge phase requires the application of a potentially large number
of rules to compare two records, and thus has the potential for the largest constant factor.

Notice thatw is aparameterof the window-scanning procedure. The legitimate values of
wmay range from 2 (whereby only two consecutive elements are compared) to N (whereby
each element is compared to all others). The latter case pertains to the full quadratic
(O(N2)) time process at the maximal potential accuracy (as defined by the equational
theory to be the percentage of all duplicates correctly found in the merging process). The
former case (wherew may be viewed as a small constant relative toN ) pertains to optimal
time performance (onlyO(N) time) but at minimal accuracy. The fundamental question is
what are the optimal settings forw to maximize accuracy while minimizing computational
cost?

Note, however, that for very large databases the dominant cost is likely disk I/O, and
hence the number of passes over the data set. In this case, at least three passes would
be needed, one pass for conditioning the data and preparing keys, at least a second pass,
likely more, for a high speed sort like, for example, the AlphaSort (Nyberg, et al., 1994),
and a final pass for window processing and application of the rule program for each record
entering the sliding window. Depending upon the complexity of the rule program and
window sizew, the last pass may indeed be the dominant cost. We introduced elsewhere
(Hernández and Stolfo, 1995) the means of speeding up this phase by processing “parallel
windows” in the sorted list.

We note with interest that the sorts of optimizations detailed in the AlphaSort paper
(Nyberg, et al., 1994) may of course be fruitfully applied here. We are more concerned
with alternative process architectures that lead to higher accuracies in the computed results
while also reducing the time complexity. Thus, we consider alternative metrics for the
purposes of merge/purge to include howaccuratelycan you data cleanse for a fixed dollar
and given time constraint, rather than the specific cost- and time-based metrics proposed
in (Nyberg, et al., 1994).

2.2. Selection of Keys

The effectiveness of the sorted-neighborhood method highly depends on the key selected
to sort the records. Here a key is defined to be a sequence of a subset of attributes, or
substrings within the attributes, chosen from the record. For example, consider the four
records displayed in Table 1. For this particular application, suppose the “key designer”
for the sorting phase has determined that for a typical data set the following keys should
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Table 1.Example Records and Keys

First Last Address ID Key

Sal Stolfo 123 First Street 45678987 STLSAL123FRST456
Sal Stolfo 123 First Street 45678986 STLSAL123FRST456
Sal Stolpho 123 First Street 45688987 STLSAL123FRST456
Sal Stiles 123 Forest Street 45654321 STLSAL123FRST456

be extracted from the data since they provide sufficient discriminating power in identifying
likely candidates for matching. The key consists of the concatenation of several ordered
fields (or attributes) in the data: The first three consonants of a last name are concatenated
with the first three letters of the first name field, followed by the address number field,
and all of the consonants of the street name. This is followed by the first three digits of
the social security field. These choices are made since the key designer determined that
last names are typically misspelled (due to mistakes in vocalized sounds, vowels), but first
names are typically more common and less prone to being misunderstood and hence less
likely to be recorded incorrectly. The keys are now used for sorting the entire data set
with the intention that all equivalent or matching data will appear close to each other in
the final sorted list. Notice how the first and second records are exact duplicates, while the
third is likely the same person but with a misspelled last name. We would expect that this
“phonetically-based” mistake will be caught by a reasonable equational theory. However,
the fourth record, although having the exact same key as the prior three records, appears
unlikely to be the same person.

2.3. Equational theory

The comparison of records, during the merge phase, to determine their equivalence is a
complex inferential process that considers much more information in the compared records
than the keys used for sorting. For example, suppose two person names are spelled nearly
(but not) identically, and have the exact same address. We might infer they are the same
person. On the other hand, suppose two records have exactly the same social security
numbers, but the names and addresses are completely different. We could either assume
the records represent the same person who changed his name and moved, or the records
represent different persons, and the social security number field is incorrect for one of them.
Without any further information, we may perhaps assume the latter. The more information
there is in the records, the better inferences can be made. For example,Michael Smith
andMichele Smith could have the same address, and their names are “reasonably close”.
If gender and age information is available in some field of the data, we could perhaps infer
thatMichael andMichele are either married or siblings.

What we need to specify for these inferences is an equational theory that dictates the logic
of domain equivalence, not simply value or string equivalence. Users of a general purpose
data cleansing facility benefit from higher level formalisms and languages permitting ease
of experimentation and modification. For these reasons, a natural approach to specifying an
equational theory and making it practical would be the use of a declarative rule language.
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Rule languages have been effectively used in a wide range of applications requiring inference
over large data sets. Much research has been conducted to provide efficient means for their
compilation and evaluation, and this technology can be exploited here for purposes of data
cleansing efficiently.

As an example, here is a simplified rule in English that exemplifies one axiom of our
equational theory relevant to our idealized employee database:

Given two records, r1 and r2.

IF the last name of r1 equals the last name of r2,

AND the first names differ slightly,

AND the address of r1 equals the address of r2

THEN

r1 is equivalent to r2.

The implementation of “differ slightly” specified here in English is based upon
the computation of adistance functionapplied to the first name fields of two records, and
the comparison of its results to a threshold to capture obvious typographical errors that
may occur in the data. The selection of a distance function and a proper threshold is
also a knowledge intensive activity that demands experimental evaluation. An improperly
chosen threshold will lead to either an increase in the number of falsely matched records
or to a decrease in the number of matching records that should be merged. A number
of alternative distance functions for typographical mistakes were implemented and tested
in the experiments reported below including distances based uponedit distance, phonetic
distanceand “typewriter” distance. The results displayed in section 3 are based upon
edit distance computation since the outcome of the program did not vary much among the
different distance functions for the particular databases used in our study.

Notice that rules do not necessarily need to compare values from the same attribute (or
same domain). For instance, to detect a transposition in a person’s name we could write a
rule that compares the first name of one record with the last name of the second record and
the last name of the first record with the first name of the second record (see appendix A for
such an example rule). Modern object-relational databases allow users to add complex data
types (and functions to manipulate values in the domain of the data type) to the database
engine. Functions to compare these complex data types (e.g., sets, images, sound, etc.)
could also be used within rules to perform the matching of complex tuples.

For the purpose of experimental study, we wrote an OPS5 (Forgy, 1981) rule program con-
sisting of 26 rules for this particular domain of employee records and was tested repeatedly
over relatively small databases of records. Once we were satisfied with the performance of
our rules, distance functions, and thresholds, we recoded the rules directly in C to obtain
speed-up over the OPS5 implementation.

Appendix A shows the rules used in the equational theory implemented for this work. A
rule translator converted these rules into an equivalent C program.

The inference process encoded in the rules is divided into three stages. In the first stage,
two records within a window are compared to see if they have “similar” fields, namely, the
social security field, the name field, and the street address field. In the second stage, the
information gathered during the first stage is combined to see if can merge pairs of records.
For example, if a pair of records have similar social security numbers and similar names
then the rulesimilar ssns and names declares them merged (EQUAL). For those pair
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Table 2.Example of matching records detected by our equational
theory rule base.

SSN Name (First, Initial, Last) Address

334600443 Lisa Boardman 144 Wars St.
334600443 Lisa Brown 144 Ward St.

525520001 Ramon Bonilla 38 Ward St.
525250001 Raymond Bonilla 38 Ward St.

0 Diana D. Ambrosion 40 Brik Church Av.
0 Diana A. Dambrosion 40 Brick Church Av.

0 Colette Johnen 600 113th St. apt. 5a5
0 John Colette 600 113th St. ap. 585

850982319 Ivette A Keegan 23 Florida Av.
950982319 Yvette A Kegan 23 Florida St.

of records that could not be merged because not enough information was gathered on the
first stage, the rule program takes a closer look at other fields like the city name, state
and zipcode to see if a merge can be done. Otherwise, in the third stage, more precise
“edit-distance” functions are used over some fields as a last attempt for merging a pair of
records. Table 2 demonstrates a number of actual records the rule-program correctly deems
equivalent.

It is important to note that the essence of the approach proposed here permits a wide
range of equational theories on various data types. We chose to use string data in this study
(e.g., names, addresses) for pedagogical reasons (afterall everyone gets “faulty” junk mail).
We could equally as well demonstrate the concepts using alternative databases of different
typed objects and correspondingly different rule sets.

Table 2 displays records with such errors that may commonly be found in mailing lists,
for example. (Indeed, poor implementations of the merge/purge task by commercial orga-
nizations typically lead to several pieces of the same mail being mailed at obviously greater
expense to the same household, as nearly everyone has experienced.) These records are
identified by our rule base as equivalent.

The process of creating a good equational theory is similar to the process of creating
a good knowledge-base for an expert system. In complex problems, an expert is needed
to describe the matching process. A knowledge engineer will then encode the expert’s
knowledge as rules. The rules will then be tested and the results discussed with the expert.
Several sessions between the expert and the knowledge-engineer might be needed before
the rule set is completed.

2.4. Computing the transitive closure over the results of independent runs

In general, no single key will be sufficient to catch all matching records. The attributes or
fields that appear first in the key have higher discriminating power than those appearing
after them. Hence, if the error in a record occurs in the particular field or portion of the
field that is the most important part of the key, there may be little chance a record will end
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up close to a matching record after sorting. For instance, if an employee has two records in
the database, one with social security number193456782 and another with social security
number913456782 (the first two numbers were transposed), and if the social security
number is used as the principal field of the key, then it is very unlikely both records will fall
under the same window, i.e. the two records with transposed social security numbers will
be far apart in the sorted list and hence they may not be merged. As we will show in the
next section, the number of matching records missed by one run of the sorted-neighborhood
method can be large unless the neighborhood grows very large.

To increase the number of similar records merged, two options were explored. The
first is simply widening the scanning window size by increasingw. Clearly this increases
the computational complexity, and, as discussed in the next section, does not increase
dramatically the number of similar records merged in the test cases we ran (unless of course
the window spans the entire database which we have presumed is infeasible under strict
time and cost constraints).

The alternative strategy we implemented is to execute several independent runs of the
sorted-neighborhood method, each time using a different key and arelatively small window.
We call this strategy themulti-pass approach. For instance, in one run, we use the address
as the principal part of the key while in another run we use the last name of the employee
as the principal part of the key. Each independent run will produce a set of pairs of records
which can be merged. We then apply the transitive closure to those pairs of records. The
results will be a union of all pairs discovered by all independent runs, with no duplicates,
plus all those pairs that can be inferred by transitivity of equality.

The reason this approach works for the test cases explored here has much to do with the
nature of the errors in the data. Transposing the first two digits of the social security number
leads to non-mergeable records as we noted. However, in such records, the variability or
error appearing in another field of the records may indeed not be so large. Therefore,
although the social security numbers in two records are grossly in error, the name fields
may not be. Hence, first sorting on the name fields as the primary key will bring these two
records closer together lessening the negative effects of a gross error in the social security
field.

Notice that the use of a transitive closure step is not limited to themulti-passapproach.
We can improve the accuracy of a single pass by computing the transitive closure of the
results. If recordsa andb are found to be similar and, at the same time, recordsb andc
are also found to be similar, the transitive closure step can marka andc to be similar if
this relation was not detected by the equational theory. Moreover, recordsa andb must be
within w records to be marked as similar by the equational theory. The same is true for
recordsb andc. But, if the transitive closure step is used,a andc need not be withinw
records to be detected as similar. The use of a transitive closure at the end of any single-pass
run of the sorted-neighborhood method should allow us to reduce the size of the scanning
windoww and still detect a comparable number of similar pairs as we would find without a
final closure phase and a largerw. All single run results reported in the next section include
a final closure phase.

The utility of this approach is therefore determined by the nature and occurrences of the
errors appearing in the data. The choice of keys for sorting, their order, and the extraction of
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relevant information from a key field is a knowledge intensive activity that must be explored
and carefully evaluated prior to running a data cleansing process.

In the next section we will show how themulti-passapproach can drastically improve
the accuracy of the results of only one run of the sorted-neighborhood method with varying
large windows. Of particular interest is the observation that only a small search window
was needed for themulti-passapproach to obtain high accuracy while no individual run
with a single key for sorting produced comparable accuracy results with a large window
(other than window sizes approaching the size of the full database). These results were
found consistently over a variety of generated databases with variable errors introduced in
all fields in a systematic fashion.

3. Experimental Results

3.1. Generating the databases

All databases used to test these methods were generated automatically by a database gener-
ator that allows us to perform controlled studies and to establish the accuracy of the solution
method. This database generator provides a user with a large number of parameters that
they may set including the size of the database, the percentage of duplicate records in the
database, and the amount of error to be introduced in the duplicated records in any of the at-
tribute fields. Accuracy is measured as the percentage of the number of duplicates correctly
found by the process. False positives are measured as the percentage of records claimed to
be equivalent but which are not actual duplicates.

Here, each generated database is viewed as the concatenation of multiple databases. The
merging of records in the resultant single database is the object of study in these experiments.
Each record generated consists of the following fields, some of which can be empty: social
security number, first name, initial, last name, address, apartment, city, state, and zip code.
The names were chosen randomly from a list of 63000 real names2. The cities, states, and
zip codes (all from the U.S.A) come from publicly available lists3.

The data generated was intended to be a good model of what might actually be processed
in real-world data sets. The errors introduced in the duplicate records range from small
typographical mistakes, to complete change of last names and addresses. When setting the
parameters for typographical errors, we used known frequencies from studies in spelling
correction algorithms (Pollack and Zamora, 1987, Church and Gale, 1991, Kukich, 1992).
For this study, the generator selected from 10% to 50% of the generated records for dupli-
cation with errors, where the error in the spelling of words, names and cities was controlled
according to these published statistics found for common real world data sets.

In this paper, the performance measurement of accuracy (percentage of duplicates cap-
tured) using this “standard error model” is plotted over varying sized windows so that we
may better understand the relationship and tradeoffs between computational complexity
and accuracy. We do not believe the results will be substantially different for different
databases with the same sorts of errors in the duplicated records. Future work will help to
better establish this conjecture over widely varying error models, afforded by our database
generator. However, other statistically generated databases may bear no direct relationship
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Figure 2. Accuracy results for a 1,000,000 records database

to real data. We believe the present experiments are more realistic. Section 5 provides
substantial evidence for this case.

3.2. Results on accuracy

The purpose of this first experiment was to determine baseline accuracy of the sorted-
neighborhood method. We ran three independent runs of the sorted-neighborhood method
over each database, and used a different key during the sorting phase of each independent
run. On the first run the last name was the principal field of the key (i.e., the last name
was the first attribute in the key). On the second run, the last name was the principal field,
while, in the last run, the street address was the principal field. Our selection of the attribute
ordering of the keys was purely arbitrary. We could have used the social-security number
instead of, say, the street address. We assume all fields are noisy (and under the control of
our data generator to be made so) and therefore it does not matter what field ordering we
select for purposes of this study.

Figure 2(a) shows the effect of varying the window size from 2 to 60 records in a database
with 1,000,000 records and with an additional 423644 duplicate records with varying errors.
A record may be duplicated more than once. Notice that each independent run found from
50% to 70% of the duplicated pairs. Notice also that increasing the window size does not
help much and taking in consideration that the time complexity of the procedure goes up
as the window size increases, it is obviously fruitless at some point to use a large window.

The line marked asMulti-pass over 3 keysin Figure 2(a) shows our results when the
program computes the transitive closure over the pairs found by the three independent runs.
The percent of duplicates found goes up to almost 90%. A manual inspection of those
records not found as equivalent revealed that most of them are pairs that would be hard for
a human to identify without further information.

The equational theory is not completely trustworthy. It can decide that two records are
similar or equivalent even though they may not represent the same real-world entity; these
incorrectly paired records are called “false-positives”. Figure 2(b) shows the percent of
those records incorrectly marked as duplicates as a function of the window size. The
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percent of false positives is almost insignificant for each independent run and grows slowly
as the window size increases. The percent of false positives after the transitive closure is
also very small, but grows faster than each individual run alone. This suggests that the
transitive-closure may not be as accurate if the window size of each constituent pass is very
large!

The number of independent runs needed to obtain good results with the computation
of the transitive closure depends on how corrupt the data is and the keys selected. The
more corrupted the data, more runs might be needed to capture the matching records. The
transitive closure, however, is executed on pairs of tuple id’s, each at most 30 bits, and fast
solutions to compute transitive closure exist (Agrawal and Jagadish, 1988). From observing
real world scenarios, the size of the data set over which the closure is computed is at least
one order of magnitude smaller than the corresponding database of records, and thus does
not contribute a large cost. But note we pay a heavy price due to the number of sorts
or clusterings of the original large data set. We presented some parallel implementation
alternatives to reduce this cost in (Hern´andez and Stolfo, 1995).

3.2.1. Scaling Up Finally, we demonstrate that the sorted-neighborhood method scales
well as the size of the database increases. Due to the limitations of our available disk space,
we could only grow our databases to about 3,000,000 records. We again ran three indepen-
dent runs of the sorted-neighborhood method, each with a different key, and then computed
the transitive closure of the results. We did this for the 12 databases in Table 3. We started
with four (4) “no-duplicate databases” and for each we created duplicates for 10%, 30%,
and 50% of the records, for a total of twelve (12) distinct databases. The results are shown
in Figure 3. For these relatively large size databases, the time seems to increase linearly
as the size of the databases increase independent of the duplication factor. This is not
surprising since, as we will see in the next section, the total execution time is a function
of the total number of records (or the total number of blocks used to store those records).
The percentage of duplicates could have an effect on the time for the final transitive closure
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Table 3.Database sizes

Original number Total records Total size (Mbytes)
of records 10% 30% 50% 10% 30% 50%

500000 584495 754354 924029 45.4 58.6 71.8
1000000 1169238 1508681 1847606 91.3 118.1 144.8
1500000 1753892 2262808 2770641 138.1 178.4 218.7
1750000 2046550 2639892 3232258 161.6 208.7 255.7

step, but this time is small compared with the time needed to execute multiple passes of the
sorted neighborhood method.

3.3. Analysis

The natural question to pose is when is themulti-passapproach superior to the single-pass
case? The answer to this question lies in the complexity of the two approaches for afixed
accuracy rate(here we consider the percentage of correctly found matches).

Here we consider this question in the context of a main-memory based sequential process.
The reason being that, as we shall see, clustering provides the opportunity to reduce the
problem of sorting the entire disk-resident database to a sequence of smaller, main-memory
based analysis tasks. The serial time complexity of themulti-passapproach (withr passes)
is given by the time to create the keys, the time to sortr times, the time to window scanr times
(of window sizew) plus the time to compute the transitive closure. In our experiments, the
creation of the keys was integrated into the sorting phase. Therefore, we treat both phases
as one in this analysis. Under the simplifying assumption that all data is memory resident
(i.e., we are not I/O bound),

Tmultipass = csortrN logN + cwscanrwN + Tclosuremp

wherer is the number of passes andTclosuremp is the time for the transitive closure. The
constants depict the costs for comparison only and are related ascwscan = αcsort, where
α > 1. From analyzing our experimental program, the window scanning phase contributes
a constant,cwscan, which is at leastα = 6 times as large as the comparisons performed
in sorting. We replace the constants in term of the single constantc. The complexity
of the closure is directly related to the accuracy rate of each pass and depends upon the
duplication in the database. However, we assume the time to compute the transitive closure
on a database that is orders of magnitude smaller than the input database to be less than
the time to scan the input database once (i.e. it contributes a factor ofcclosureN < N ).
Therefore,

Tmultipass = crN logN + αcrwN + Tclosuremp

for a window size ofw. The complexity of the single pass sorted-neighborhood method is
similarly given by:

Tsinglepass = cN logN + αcWN + Tclosuresp
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Figure 4. Time and Accuracy for a Small Database

for a window size of W.
For a fixed accuracy rate, the question is then for what value ofW of the single pass

sorted-neighborhood method does themulti-passapproach perform better in time, i.e.,

cN logN + αcWN + Tclosuresp > crN logN + αcrwN + Tclosuremp

or

W >
r − 1
α

logN + rw +
1

αcN

(
Tclosuremp − Tclosuresp

)
To validate this model, we generated a small database of 13,751 records (7,500 original

records, 50% selected for duplications, and 5 maximum duplicates per selected record. The
total size of the database in bytes was approximately 1 MByte. Once read, the database
stayed in core during all phases. We ran three independent single-pass runs using different
keys and a multi-pass run using the results of the three single-pass runs. The parameters
for this experiment wereN = 13751 records andr = 3. For this particular case where
w = 10, we haveα ' 6, c ' 1.2 × 10−5, Tclosuresp = 1.2s, andTclosuremp = 7.
(Time is specified in seconds (s).) Thus, themulti-passapproach dominates the single sort
approach for these data sets whenW > 41.

Figure 4(a) shows the time required to execute each independent run on one processor,
and the total time required for themulti-passapproach while Figure 4(b) shows the accuracy
of each independent run as well as the accuracy of themulti-passapproach (please note the
logarithm scale). Forw = 10, Figure 4(a) shows that themulti-passapproach needed56.3s
to produce an accuracy rate of 93.4% (Figure 4(b)). Looking now at the times for each
single-pass run, their total time is close to56s forW = 52, slightly higher than estimated
with the above model. But the accuracy of all single-pass runs in Figure 4(b) atW = 52
are from 73% to 80%, well below the 93.4% accuracy level of themulti-passapproach.
Moreover, no single-pass run reaches an accuracy of more than 93% untilW > 7000, at
which point (not shown in Figure 4(a)) their execution time are over 4,800 seconds (80
minutes).

Let us now consider the issue when the process is I/O bound rather than a compute-bound
main-memory process. LetB be the number of disk blocks used by the input data set and
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M the number of memory pages available. Each sorted-neighborhood method execution
will access2B logM−1B disk blocks4, plusB disk blocks will be read by the window
scanning phase. The time for the sorted-neighborhood method can be expressed as:

Tsnm = 2csortB logM−1B + cwscanB

wherecsort represents the CPU cost of sorting the data in one block andcwscan represents
the CPU cost of applying the window-scan method to the data in one block.

Instead of sorting, we could divide the data intoC buckets (e.g., hashing the records
or using a multi-dimensional partitioning strategy (Ghandeharizadeh, 1990)). We call this
modification theclustering method. AssumingM = C + 1, (1 page for each bucket plus
one page for processing an input block), we need one pass over the entire data to partition the
records intoC buckets (B blocks are read). Writing the records into the buckets requires,
approximately,B block writes. Assuming the partition algorithm is perfect, each bucket
will use dBC e blocks. We must then sort (2B logM−1dBC e block accesses) and apply the
window-scanning phase to each bucket independently (approximatelyB block accesses).
In total, the clustering method requires approximately3B+2B logM−1dBC eblock accesses.
The time for one pass of the clustering method can be expressed as:

Tcluster = 2cclusterB + 2csortB logM−1d
B

C
e+ cwscanB

whereccluster is the CPU cost of partitioning one block of data.
Finally, the I/O cost of themulti-passapproach will be a multiple of the I/O cost of the

method we chose for each pass plus the time needed to compute the transitive closure step.
For instance, if we use the clustering method for 3 passes, we should expect about a time
of about3Tcluster + Txclosure.

Figure 5 shows a time comparison between the clustering method and the sorted-
neighborhood method. These results where gathered using a generated data set of 468,730
records (B = 31, 250, block size = 1,024 bytes,M = 33 blocks). Notice that in all cases,
the clustering method does better than the sorted-neighborhood method. However, the dif-
ference in time is not large. This is mainly due to the fact that the equational theory used
involved a large number of comparisons makingcwscan a lot larger than bothcsort and
ccluster. Thus, even though there are some time savings in initially partitioning the data,
the savings are small compared to the overall time cost.

In (Hernández and Stolfo, 1995) we describe parallel variants of the basic techniques
(including clustering) to show that with a modest amount of “cheap” parallel hardware, we
can speed-up themulti-passapproach to a level comparable to the time to do a single-pass
approach, but with a very high accuracy, i.e. a few small windows ultimately wins.

4. Results on Real-World Data

Even though the results we have achieved on a wide variety of statistically controlled
generated data indicate that the multi-pass approach is quite good, we need to verify that
real-world data does not deviate much from the assumptions of our controlled experiments.

The State of Washington Department of Social and Health Services maintains large
databases of transactions made over the years with state residents. In March of 1995



24 HERNÁNDEZ AND STOLFO

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6 7 8 9 10

T
im

e 
(s

)

Window size (records)

Average single-pass time, Naive SNM
Average single-pass time, Clustering SNM

Total multi-pass time, Naive SNM
Total multi-pass time, ClusteringSNM

Figure 5. Clustering vs. Basic Sorted Neighborhood Method

the Office of Children Administrative Research (OCAR) of the Department of Social and
Health Services posted a request on theKDD-nuggets(Clark, 1995) asking for assistance
analyzing one of their databases. We answered their request and this section details our
results.

OCAR analyzes the database of payments by the State to families and businesses that
provide services to needy children. OCAR’s goal is to answer questions such as: “How
many children are in foster care?”, “How long do children stay in foster care?” “How
many different homes do children typically stay in?” To accurately answer such questions,
the many computer records for payments and services must be identified for each child.
(Obviously, without matching records with the appropriate individual client, the frequency
distributions for such services will be grossly in error.) Because no unique identifier for an
individual child exists, it must be generated and assigned by an algorithm that compares
multiple service records in the database. The fields used in the records to help identify
a child include name, birth date, case number and social security number, each of which
is unreliable, containing misspellings, typographical errors and incomplete information.
This is not a unique situation in real-world databases. It was the need to develop computer
processes that more accurately identified all records for a given child that spurred OCAR
to seek assistance.

4.1. Database Description

Most of OCAR’s data is stored in one relation that contains all payments to service providers
since 1984. There are currently approximately 6,000,000 total records in the relation and
this number grows by approximately 50,000 a month. The relation has 19 attributes, of
which the most relevant (those carrying information that can be used to infer the identify of
individual entities) are: First Name, Last Name, Birthday, Social Security Number, Case



MERGE/PURGE 25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40 45 50

D
is

tr
ib

ut
io

n

Number of Records per Cluster

Figure 6. Number of records per Child as computed by OCAR (The graph is drawn only to a cluster size of 50.
In actuality, it continues to 500.).

Number, Service ID, Service dates (beginning and ending dates), Gender and Race, Provider
ID, Amount of Payment, Date of Payment, and Worker ID. Each record is 105 bytes long.

The typical problems with the OCAR data are as follows:

1. Names are frequently misspelled. Sometimes nicknames or “similar sounding” names
are used instead of the real name. Also the parent or guardian’s name is sometimes
used instead of the child’s name.

2. Social security numbers or birthdays are missing or clearly wrong (e.g., some records
have the social security number “999999999”). Likewise, the parent or guardian’s
information is sometimes used instead of the child’s proper information.

3. The case number, which should uniquely identify a family, often changes when a child’s
family moves to another part of the state, or is referred for service a second time after
more than a couple years since the first referral.

4. There are records which cannot be assigned to any person because the name entered in
the record was not the child’s name, but that of the service provider. Also, names like
“Anonymous Male” and “Anonymous Female” were used. (We call this last type of
recordsghost records.)

Because of the private nature of the data recorded in the database, we cannot produce sample
records to illustrate each of the mentioned cases. Even so, any database administrator
responsible for large corporate or agency databases will immediately see the parallels here
to their data.

OCAR provided a sample of their database to conduct this study. The sample, which
contains the data from only one service office, has 128,438 records (13.6 Mbytes). They
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also provided us with their current individual identification number for each record in the
sample (the number that should uniquely identify each child in the database) according to
their own analysis. These OCAR-assigned identifiers serve as our basis for comparing the
accuracy over varying window sizes.

Figure 6 shows the distribution of the number of records per individual detected by
OCAR. Most individuals in the database are represented on average by 1 to 10 records in
the database (approximately 2,000 individuals are represented by 1 record in the database).
Note that individuals may be represented by as much as 30-40 records and, although not
shown in Figure 6, there are some individuals with more than 100 records, and one with
about 500 records. Our task is to apply our data cleansing techniques to compute a new
individual identification number for each record and compare its accuracy to that attained
by the OCAR provided identification number.

4.2. Data Cleansing OCAR’s data

OCAR’s individual identification numbers are, of course, not perfect. This set of identifiers
was computed by a single-scan clustering technique based upon hashing the records using
the first four letters of the last name, the first three letters of the first name, the birth month
and year, and the case number as hashing keys. This strategy identified 8,504 individuals
in the sample database.

Our first task was to create an equational theory in consultation with an OCAR’s expert5.
The resultant rule base consists of 24 rules. We applied this equational theory to the data
using the basic sorted-neighborhood method, as well as the multi-pass method for a rigorous
comparative evaluation. We used the following keys for each independent run:

1. Last Name, First Name, Social Security Number, and Case Number.

2. First Name, Last Name, Social Security Number, and Case Number.

3. Case Number, First Name, Last Name, and Social Security Number.

Figure 7 displays the number of individuals detected by each independent pass of the
basic sorted-neighborhood method and the number of individuals after the closure phase as
a function of the window size used. The constant 8,504 individuals detected by OCAR are
plotted as a straight line as a means of comparison. As with the statistically generated data,
the number of individuals detected here initially goes down as the window size increases
but then stabilizes and remains almost constant. Notice also the large improvement in the
performance when combining the results of all passes with the transitive closure phase6.
Thus, the results demonstrated under our controlled studies are validated by this set of
real-world data.

For a window size of 10, the multi-pass process detected 8,125 individuals in the sample.
The question we must then answer is whether those 8,125 individuals are closer to the actual
number of individuals in the data than OCAR’s 8,504 individuals. To answer this question,
we looked at the different group of individuals detected by OCAR and our sample results.

We call “possible misses” those groups of individuals that our data cleansing program
considered different while OCAR considered similar. We also call “possible false-positives”
those groups of individuals that OCAR did not consider similar but where grouped together
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Figure 7. Number of individuals detected

OCAR′s Analysis : {R1, R2, R3} {R4, R5} {R6, R7, R8} {R9, R10}
SNM ′s Analysis : {R1, R2, R3} {R4} {R5} {R6, R7, R8, R9, R10}

The separation of{R4, R5} by the sorted-neighborhood method is counted as a “possible miss”. The
union of{R6, R7, R8} and {R9, R10} is counted as a “possible false-positive”.

Figure 8. Example of the definition of “possible misses” and “possible false-positives”

by our system. Figure 8 shows an example of a “miss” and a “false-positive” under this
definition. Figure 9 depicts the number of possible misses and possible false-positives when
comparing our results with OCAR’s. As in our previous experiments, the total number of
misses goes down as the window size goes up, and drops sharply after the transitive closure
phase. The behavior of the false-positives is, as expected, contrary to that of the misses:
the number grows with the window size and goes up after the transitive closure phase.

For the multi-pass sorted-neighborhood method to improve on OCAR’s results the fol-
lowing two conditions must be met:

• The number of possible misses our data cleansing program correctly did not merge
should be larger than the number of “real misses” (those that OCAR correctly merged
but our program did not.)

• The number of possible false-positives where records were correctly merged by the
multi-pass sorted-neighborhood method should be larger than the real false-positives
(cases where our approach incorrectly merged records that OCAR did not).
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Figure 9. Accuracy results of sorted-neighborhood method over OCAR’s data

To study whether our results met the above conditions, we and the OCAR group manually
inspected the possible misses and the possible false-positives for the case when the window
size was 10. The results of this manual inspection are as follows:

• Possible Misses: The multi-pass sorted-neighborhood method failed to detect 96 indi-
viduals that OCAR detected. Of these 96 possible misses:

– 44 (45.8%) were correctly separated by our approach and therefore not real misses.
(OCAR’s results on these are wrong.)

– 26 (27.1%) were incorrectly separated by our approach and therefore real misses.

– 26 (27.1%) were special cases involving “ghost” records or records of payments
to outside agencies. We agreed with OCAR to exclude these cases from further
consideration.

• Possible False Positives: There were 580 instances of the multi-pass sorted-neighborhood
method joining records as individuals that OCAR’s did not. Of these 580 cases, we
manually inspected 225 (38.7%) of them with the following results:

– 14.0% of them were incorrectly merged by our approach.

– 86.0% where correctly merged by our approach.

By way of summary, 45.8% of the possible misses are not real misses but correctly
classified records, and an estimated 86.0% of the possible false-positives are not real false
positives. These results lead OCAR to be confident that the multi-pass sorted-neighborhood
method will improve their individual detection procedure.

5. Incremental Merge/Purge

All versions of the sorted-neighborhood method we discussed in section 2 started the pro-
cedure by first concatenating the input lists of tuples. This concatenation step is unavoidable
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Definitions:
R0 : The initial relation.
∆i : Thei-th increment relation.
ci : A relation of only “prime representatives” of the clusters

identified by the Merge/Purge procedure.

Initially:
∆0 ← R0

c0 ← ∅
i ← 0

Incremental Algorithm:
For every∆i do:
begin

1. LetIi ← CONCATENATE(ci,∆i).
2. Apply any Merge/Purge procedure toIi. The result is a cluster

assignment for every record inIi.
3. Separate each record inIi into the clusters assigned by the

previous step.
4. For every cluster of records, if necessary, select one or more

records as prime representatives for the cluster. Call the
relation formed of all selected prime representatives,ci+1.

end.

Figure 10. Incremental Merge/Purge Algorithm

and presumably acceptable the first time a set of databases is received for processing. How-
ever, once the data has been cleansed (via the merge/purge process) and stored for future
use, concatenation of this processed data with recently arrived data before re-applying a
merge/purge process might not be the best strategy to follow. In particular, in situations
where new increments of data are available in short periods of time, concatenating all data
before merging and purging could prove prohibitively expensive in both time and space
required. In this section we describe an incremental version of the sorted-neighborhood
procedure and provide some initial time and accuracy results for statistically generated data
sets.

Figure 10 summarizes an Incremental Merge/Purge algorithm. The algorithm specifies a
loop repeated for each increment of information received by the system. The increment is
concatenated to a relation of prime-representatives pre-computed from the previous run of
the Incremental Merge/Purge algorithm, and the multi-pass sorted-neighborhood method is
applied to the resulting relation. Here prime-representatives are a set of records extracted
from each cluster of records used to represent the information in its cluster. From the
pattern recognition community, we can think of these prime-representatives as analogous
to the “cluster centroids” (Dubes and Jain, 1976) generally used to represent clusters of
information, or as the base element of an equivalence class.
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Initially, no previous set of prime-representatives exists and the first increment is just the
first input relation. The concatenation step has, therefore, no effect. After the execution
of the merge/purge procedure, each record from the input relation can be separated into
clusters of similar records. The first time the algorithm is used, all records will go into new
clusters. Then, starting the second time the algorithm is executed, records will be added to
previously existing clusters as well as new clusters.

Of particular importance to the success of this incremental procedure, in terms of accuracy
of the results, is thecorrectselection of the prime-representatives of each formed cluster.
As with many other phases of the merge/purge procedure, this selection is also a knowledge-
intensive operation where the domain of each application will determine what is a good set of
prime-representatives. Before describing some strategies for selecting these representatives,
note that the description of step 4 of the algorithm in Figure 10 also implies that for some
clusters, the best prime-representative isno representative at all. For a possible practical
example where this strategy is true, consider the OCAR data described in chapter 4. There,
clusters containing records dated as more than 10 years old are very unlikely to receive a
new record. Such clusters can be removed from further consideration by not selecting a
prime-representative for them.

In the case where one or more prime-representatives per cluster are necessary, here are
some possible strategies for their selection:

• Random Sample: Select a sample of records at random from each cluster.

• N-Latest: Data is sometimes physically ordered by the time of entry into the relation.
In many such cases, the most recent elements entered in the database can be assumed to
better represent the cluster (e.g., the OCAR data is such an example). In this strategy,
theN latest elements are selected as prime-representatives.

• Generalization: Generate the prime-representatives by generalizing the data col-
lected from several positive examples (records) of the concept represented by the
cluster. Techniques for generalizing concepts are well known from machine learn-
ing (Dietterich and Michalski, 1983, Lebowitz, 1986).

• Syntactic: Choose the largest or more complete record.

• Utility : Choose the record that matched others more frequently.

In this section we present initial results comparing the time and accuracy performance
of Incremental merge/purge with the basic Merge/Purge algorithm. We selected the N-
Latest prime-representative strategy for our experiments for its implementation simplicity.
Experiments are underway to test and compare all the above strategies. Results will be
described in a future report.

Two important assumptions were made while describing the Incremental Merge/Purge
algorithm. First, it was assumed that no data previously used to select each cluster’s prime-
representative will be deleted (i.e., nonegative deltas). Second, it was also assumed that
no changes in the rule-set will occur after the first increment of data is processed. We now
discuss, briefly, the implications of these two assumptions.

Removing records already clustered could split some clusters. If a removed record was
responsible for merging two clusters, the original two clusters so merged will become
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separated. Two new prime-representatives must be computed before the next increment of
data arrives for processing. The procedure to follow in case of deletions is the following:

1. Delay all deletions until after step 3 of the Incremental Algorithm in Figure 10.

2. Perform all deletions. Remember cluster IDs of all clusters affected.

3. Re-compute the closure in all clusters affected, splitting existing clusters as necessary.

Then, the Incremental Algorithm resumes at step 4 by recomputing a new prime-representative
for all clusters, including the new one formed after the deletions.

Changes to the data are a little more difficult. Changes could be treated as a deletion
followed by an insertion. However, it is often the case (in particular, if it is a human making
the change) that the new record should belong to the same cluster as the removed one.
Here a user-set parameter should determine how and in what circumstances changes to
data should be treated as a deletion followed by an insertion (to be evaluated in the next
increment evaluation) or just a direct change into an existing cluster.

Changes of the rule-base defining the equational theory are even more difficult to correctly
incorporate into the Incremental Algorithm. Minor changes to the rule-base (for example,
small changes to some thresholds defining equality over two fields, deletion of rules that
have rarely fired) are expected to have little impact on the contents of the formed clusters.
Nonetheless, depending on the data or if major changes are made to the rule-base, a large
number of current clusters could be erroneous. Unfortunately, the only solution to this
problem is to run a merge/purge procedure once again using all available data. On the other
hand, depending on the application, a slight number of inconsistencies might be acceptable
therefore avoiding the need to run the entire procedure. Here, once again, the decision is
highly application dependent and requires human intervention to resolve.

5.1. Initial experimental results on the Incremental Algorithm

We conducted a number of experiments to test the Incremental merge/purge algorithm. In
these experiments we were interested in studying the time performance of the different
stages of the algorithm and the effect on the accuracy of the results.

To this end, we started with the OCAR sample described in section 4.1 (128,439 records)
and divided it into five (5) parts,∆0,∆1,∆2,∆3,∆4, with25, 000,25, 000,25, 000,25, 000
and28, 439 records, respectively. The Incremental merge/purge algorithm was implement
as a UNIX shell script which concatenated and fed the proper parts to the basic multi-
pass sorted-neighborhood method. AnAWKscript combined with a C program was used
to implement the prime-representative selection part of the algorithm. The only strategy
tested was the N-latest strategy, whereN = 1 (i.e., only the latest record in a cluster was
used as prime-representative).

Figure 11 shows the time results for the five-part Incremental merge/purge procedure in
contrast to the normal (non-incremental) Merge/Purge. These results were obtained with a
three-pass basic multi-pass approach using the keys described in section 4.2, a window-size
of 10 records, and using a Sun 5 Workstation running Solaris 2.3.

The results in Figure 11 are divided by deltas. Four bars, each representing the actual
time for a particular measured phase, are presented for each division in Figure 11. The first
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Figure 11. Incremental vs. Normal Multi-Pass Merge/Purge Times

bar corresponds to the time taken to collect the prime-representatives of the previous run of
the multi-pass approach (note this bar is 0 for the first delta). The second bar represents the
time for executing the multi-pass approach over the concatenation of the current delta with
the prime-representatives records. The total time for the Incremental merge/purge process
is the addition of these two times and is represented by the third bar. Finally, the last bar
shows the time for a normal Merge/Purge procedure running over a database composed of
the concatenation of all deltas, up to and including the current one.

For instance, the bars for the third delta represent the following. It took 31.6 seconds to
process the previous results, select the prime representatives, and concatenate the new delta
with the selected prime representatives. Then, it took 71.4 seconds to apply a multi-pass
sorted-neighborhood method to this data set. Thus, the total time spent by the incremental
version of the procedure to integrate this new delta into the results was 31.6 + 71.4 = 103.0
seconds. Compare that with the total time it would take to execute the normal (non-
incremental) multi-pass sorted-neighborhood method over a database composed of the
concatenations of delta 1, delta 2, and delta 3. This time was 251.3 seconds.

Notice that for every case after the first delta, the total time for obtaining results using the
Incremental merge/purge process (the third bar) is considerably less than the total time for
obtaining the same results using the normal process (the fourth bar). We also note that the
time to collect and prepare the prime-representatives (the first bar in Figure 11) is increasing
relatively fast and quickly becomes the dominant factor in the total execution time of the
Incremental merge/purge process. In the current implementation, the entire data set (the
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Figure 12.Accuracy of the Incremental M/P procedure

concatenation of all deltas, up to an including the current one) is sorted to find the clusters
and all records in the cluster are considered when selecting the prime-representatives. This
is clearly not the optimal solution for the clustering of records and the selection of prime-
representatives. A better implementation could incrementally select prime-representatives
based on the previously computed one. We are currently experimenting with techniques
that will select the prime-representatives without sorting the data set first. The current
implementation, nonetheless, gives a “worst-case” execution time for this phase. Any
optimization will only decrease the total Incremental merge/purge time.

Finally, Figure 12 compares the accuracy results of the Incremental merge/purge proce-
dure with the normal procedure. The total number of individuals (clusters) detected, the
number of possible misses and the number of possible false-positives increased with the
use of the Incremental merge/purge procedure. Nonetheless, the increase of all measures is
almost negligible and arguably acceptable given the remarkable reduction of time provided
by the incremental procedure.

6. Conclusion

The sorted-neighborhood method is expensive due to the sorting phase, as well as the need
to search in large windows for high accuracy. Alternative methods based on data clustering
modestly improves the process in time as reported elsewhere. However, neither achieves
high accuracy without inspecting large neighborhoods of records. Of particular interest is
that performing the data cleansing process multiple times over small windows, followed by
the computation of the transitive closure, dominates in accuracy for either method. While
multiple passes with small windows increases the number of successful matches, small
windows also favor decreases in false positives, leading to high overall accuracy of the
merge phase. An alternative view is that a single pass approach would be far slower to
achieve a comparable accuracy as a multi-pass approach.

The results we demonstrate for statistically generated databases provide the means of
quantifying the accuracy of the alternative methods. In real-world data we have no com-
parable means of rigorously evaluating these results. Nevertheless, the application of our
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program over real-world data provided by the State of Washington Child Welfare Depart-
ment has validated our claims of improved accuracy of the multi-pass method based upon
“eye-balling” a significant sample of data. Thus, what the controlled empirical studies have
shown indicates that improved accuracy will be exhibited for real world data with the same
sorts of errors and complexity of matching as described in this paper.

Finally, the results reported here form the basis of aDataBladeModule available for the
Informix Universal Server and is marketed as theDataCleanser DataBlade.

Appendix A

Rules in the equational theory

# Rule program for mailing list application.
# Written By Mauricio A. Hernandez
#
# Rules are tested sequentially until either the two input records, A and B,
# are declared EQUAL (or NOTEQUAL), or until no more rules can be processed.
# In the latter case, the two record are declared NOTEQUAL by default.

# First Stage - Gather information about similar fields
Rule comparessns
IF samessnp(A.ssn, B.ssn, 3)
THEN ASSERT similarssns;

Rule comparenames
IF comparenames(A.Name, B.Name, A.Fname, A.Minit, A.Lname, B.Fname, B.Minit, B.Lname)
THEN ASSERT similarnames;

Rule compareaddresses
IF compareaddresses(A.Staddr, B.Staddr)
THEN ASSERT similaraddrs;

Rule similarssnsandnames
IF (similar ssns AND similarnames)
THEN EQUAL;

# Second Stage - Gather more information about the two recrods.
Rule comparecities
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IF samecity(A.City, B.City)
THEN ASSERT similarcity;

Rule comparezipcodes
IF samezipcode(A.Zipcode, B.Zipcode)
THEN ASSERT similarzip;

Rule comparestates
IF strcmp(A.State, B.State) = 0
THEN ASSERT similarstate;

Rule addressesvery similar
IF (similar addrs AND similarcity AND (similar state OR similarzip))
THEN ASSERT verysimilar addrs;

Rule verysimilar addressdecision
IF ((similar ssns OR similarnames) AND verysimilar addrs)
THEN EQUAL;

# Third Stage - Catch more difficult cases.
Rule comparest nums
IF A.St number AND B.Stnumber AND veryclosenum(A.Stnumber, B.Stnumber)
THEN ASSERT veryclosestnum;

Rule compareapmts
IF A.Aptm no AND B.Aptm no AND very closestr(A.Aptm no, B.Aptmno)
THEN ASSERT verycloseaptm;

Rule bigdecision
IF ((very closestnum AND closebut not much(A.Staddr, B.Staddr) AND verycloseaptm
AND similar city AND (similar state OR similarzip) AND (NOT similar addrs)) OR (similaraddrs
AND very closestnum AND verycloseaptm AND similarzip))
THEN ASSERT verysimilar addrs;

Rule similaraddrstake2
IF very similar addrs AND (similarssns OR similarnames)
THEN EQUAL;

Rule veryclosessncloseaddress
IF (similar addrs AND similarssns AND NOT similarnames AND samessnp(A.ssn,B.ssn,2))
THEN EQUAL;

Rule lastchange
IF (similar ssns AND verysimilar addrs AND samenameor initial(A.Fname, B.Fname) AND sim-
ilar zip)
THEN EQUAL;
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Notes

1. One may view the formal results of this comparative evaluation by browsing the site
http://www.cs.columbia.edu/˜sal/merge-purge.html.

2. Seeftp://ftp.denet.dk/pub/wordlists

3. Ftp intocdrom.com andcd /pub/FreeBSD/FreeBSD-current/src/share/misc .

4. The 2 comes from the fact that we are counting both read and write operations.

5. Timothy Clark, Computer Information Consultant for OCAR, provided the necessary expertise to define the
rule base.

6. Even though we used three passes for the experiments we describe here, two passes using only the first and
the third key would have produced almost similar results. The second key pass only marginally improved
the results. This significant observation may occur in other real-world data indicating that the multi-pass
approach may simply be a “two-pass” approach, significantly reducing the complexity of the process while
still achieving accurate results.
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